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1 Summary
This document is the Final Performance Report on award no. FA8655-13-1-3077. The stated
aim of this research effort was to establish a mathematically precise and biologically meaningful
interpretation of the ‘Mode Sensing Hypothesis’ [1] using system theoretic tools and system
identification techniques. The Mode Sensing Hypothesis can be interpreted as the very general
proposition that the high performance observed in insect flight can be related to the way in which
the insect represents its flight dynamics in the physiological system generating the sensorimotor
response which it uses to stabilize its flight [1]. Here we define the sensorimotor response of
an insect as the dynamic relationship between the visual, aerodynamic, and inertial stimuli to
which the insect responds, and the aerodynamic forces and moments that the insect causes to be
exerted in response. This definition accurately captures the classical understanding of what is
meant by the term ‘sensorimotor response’ in the context of flight stabilization and control, but it
will be seen that the elaboration of this definition motivates a significant departure from the way
in which insect flight control has more recently been modelled.

The approach that we adopt here differs from previous, related work in several fundamental
respects. One crucial difference is that previous related work has conceptualised the problem of
insect flight control by starting with an open-loop description of the insect’s flight dynamics, and
postulating closure of the assumed control loop(s) by sensory feedback [2, 3, 4, 5, 6, 7]. This
is the same approach as has classically been adopted in aircraft design. However, whereas the
empirical engineering approach is able to progress from open-loop wind tunnel studies to test
flights with a human pilot, there is obviously no such thing as an open-loop insect. Thus, the
underlying ‘plant’ does not really exist except as an abstract theoretical concept, and the only
measurable and meaningful reality is that the insect always operates in closed-loop insofar as its
own internal feedback pathways are concerned. By this we mean simply that the insect’s internal
physiological feedback loops are always operative in flight—even if the normal flight dynamics
have been eliminated by tethering. It follows that the only realistic way to approach the problem
is from the top down.

Previous system theoretic work on the Mode Sensing Hypothesis has focussed upon the tun-
ing of individually identified optic-flow sensitive visual interneurons [8]. However, flying insects
respond to a combination of visual, aerodynamic, and inertial stimuli, and all three kinds of stim-
ulus are generated by the dynamics of the insect’s own self-motion. A key achievement of the
present work is the formulation of a state-space model which includes all of the visual, aerody-
namic, and inertial stimuli to which flying insects are known to respond. Furthermore, rather than
being derived from the bottom-up, the model that we present is written in a top-down manner,
proceeding from a state-space description of the insect’s sensorimotor response as measured in
a tethered flight experiment. The resulting formulation therefore lays the groundwork for future
empirical studies, but is also intended to provide fundamental insight into the meaning of a state-
space representation of an insect’s sensorimotor response in advance of the significant empirical
effort that will be required to fit such a model using the subspace identification methods that we
allude to below.

The original exposition of the Mode Sensing Hypothesis [1] attempted—with some success—
to relate the modes of motion of the insect’s natural body dynamics to the information carried
by individually identified visual interneurons and individually identified descending neurons. In
this, its original form, the Mode Sensing Hypothesis was intended to offer a rationale for un-
derstanding the design of sensory systems based upon matched filters. However, a weakness of
this formulation is that the natural dynamics of the insect (i.e. the dynamics of the uncontrolled
system) exist only as an abstract concept, which makes the hypothesis challenging to test empir-
ically. Furthermore, where these natural dynamics have been simulated for model insects, they
have been found to be unstable and hence fundamentally different to the stable dynamics of the
closed-loop system [9, 10, 4, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Finally, there is an intrinsic
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difficulty associated with relating the complex eigenvectors characterising oscillatory modes of
motion to meaningful directions in state space.

For this reason, more recent work [8] has sought a more rigorous control theoretic interpret-
ation of the Mode Sensing Hypothesis, developing a framework involving concepts of control-
lability and observability. However, because controllability and observability are related to the
transfer of system energy associated with the input and output of the system, respectively, through
its state, the introduction of these concepts begs the question of how the input, output, and state
of the system should be defined. Insufficient attention has been paid to this point to date, and a
second distinguishing feature of our approach is that by focussing upon the insect’s sensorimotor
response—a well-defined biological concept—we pin down precisely what is meant by ‘input’
and ‘output’ in the context of a system theoretic interpretation of the Mode Sensing Hypothesis.
Furthermore, we make the definition of the state space unique by postulating that the function
of the insect’s sensorimotor response is equitable system energy distribution in the integrated
system composed of the sensory and neural processing apparatus, the flight apparatus, and the
flight motion dynamics. This postulate of equitable energy distribution is expressed theoretically
through the system-theoretic notion of balanced realisation, and is practically important in al-
lowing the identification of a state-space model from experimentally available input-output pairs
using the tools and algorithms of subspace system identification.

In summary, this report sets out a framework for formulating an empirically testable control
theoretic interpretation of the Mode Sensing Hypothesis. The approach that we take throughout
is to juxtapose fundamental theoretical results with biologically meaningful interpretations of
those results in the context of an insect’s sensorimotor response.

2 Introduction
The aim of this paper is to develop a mathematical framework for modelling the sensorimo-
tor response that insects use to stabilize their flight, defined here as the dynamic relationship
between the visual, aerodynamic, and inertial stimuli to which the insect responds, and the aero-
dynamic forces and moments that the insect causes to be exerted in response. For reasons that
we discuss further below, we limit ourselves here to modelling the sensorimotor response with
respect to small disturbances from a commanded reference condition of stationary hover. Al-
though it would be possible to extend the model to encompass other reference conditions, there
are several advantages to considering this reference condition in particular. First, stationary hover
represents an equilibrium flight condition—at least in a time-averaged sense—because the aero-
dynamic forces and moments must obviously cancel the insect’s body weight through the course
of a single wingbeat, in order for the insect to remain stationary from one wingbeat to the next.
This property becomes important when linearizing the model about the reference condition, be-
cause the alternative of linearizing about a non-equilibrium reference condition leads in general
to a time-variant system—even if the underlying nonlinear system is time-invariant. Second, be-
cause all of the kinematic variables describing the body’s motion are zero by default in stationary
hover (or can be defined to be so), there is no need to introduce any explicit disturbance nota-
tion for these kinematic variables, since their absolute values can be equated directly with their
disturbance values. Nevertheless, it is important to keep in mind that the kinematic variables
which form the input to the sensorimotor response are to be understood, conceptually at least, as
perturbations from a commanded reference condition.

The sensorimotor response of a free-flying insect is the result of a complex interaction between
its sensory and neural processing apparatus, its flight apparatus, and its flight motion dynamics.
Hence, in theory at least, application of the laws of physics relevant to each of these three subsys-
tems could produce a system of coupled differential equations, which could then be linearized
about some biologically plausible reference condition to obtain a linear model of the system.
Because such a model would be derived from first principles, it would be expressed in terms of
physically meaningful variables, quantified in concrete physical units. Realistically, however,
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the classical route of writing out differential equations for the different subsystems and the vari-
ous couplings between them represents a formidable, and presently insurmountable, challenge.
There are several reasons why this is the case. First, even for the most comprehensively-analysed
species of flying insect, we lack sufficient knowledge about the structure and function of the an-
imal’s neuromuscular system and flight apparatus to capture this credibly using first-principles
modelling. Second, even if such knowledge were available, the first-principles mathematical
modelling of the interactions of the neuromuscular system with the physics of flight would still
be extraordinarily demanding, even in a simplified perceptual context. Finally, even if such first-
principles modelling were to produce a plausible mathematical model, then its validation would
require detailed and comprehensive experimental data measured inside a living, flying insect—
data that are not likely to be available for some time to come.

An alternative mathematical modelling route, which we propose here, is to derive a func-
tional, rather than neuroanatomical, model of the sensorimotor response. For pragmatic reasons,
we limit ourselves to using the well-developed theory of linear time-invariant (LTI) systems.
This is a powerful framework, which provides not only fundamental insights in control theory,
but also operationally feasible algorithms for mathematical modelling [20]. Specifically, we
propose an LTI state-space model of the sensorimotor response that could be identified from
input-output pairs obtained experimentally, using a subspace system identification method. The
experimentally unobservable internal state of the LTI model would be derived by postulating that
the function of the insect’s sensorimotor response is equitable system energy distribution in the
integrated system composed of the sensory and neural processing apparatus, the flight apparatus,
and the flight motion dynamics. This postulate of equitable energy distribution in an LTI sys-
tem is expressed theoretically through the system-theoretic notion of balanced realisation, and is
practically important in allowing the identification of a state-space model from experimentally
available input-output pairs using the tools and algorithms of subspace system identification. The
main body of the paper aims to specify the form of such a model and to elaborate the mathem-
atical tools that will be needed for its analysis. We conclude by using the model to facilitate
a system theoretic interpretation of the Mode Sensing Hypothesis, which in its most general
form is the proposition that the high performance observed in insect flight can be related to the
way in which the insect represents its flight dynamics in the physiological system generating its
sensorimotor response [1].

3 Linear time-invariant systems theory
The causal relationship between sensory input and motor output is a dynamic one. That is to say,
both input and output are functions of time, which cannot be eliminated to obtain a static input-
output curve. Instead, the optomotor response of a flying insect has to be expressed as a dynamic
relationship LWu.t/ ! y.t/ between two functions of continuous time t . This relationship is
fully expressed by the set of all input-output pairs, each pair being composed of an input u.t/,
and its corresponding output y.t/, defined on the time interval .�1;1/. In practice, it is only
possible to measure a subset of possible input-output pairs empirically, and only over a finite time
interval. A fundamental question, therefore, is whether there exists a mathematical model which,
for any input u.t/, allows us to predict the corresponding output y.t/? The answer is affirmative
for an LTI system, so we begin by asking whether it is reasonable to model the sensorimotor
responses of flying insects in this way. Of course, no real physical system is either strictly linear
or strictly time-invariant, so that the LTI framework always represents something of a theoretical
idealisation. Nevertheless, LTI systems theory has proven to be an exceedingly useful framework
for modelling control problems in engineering, and has also found extensive use in biology. Thus,
the important question is not whether insect sensorimotor responses are actually linear and time-
invariant—which they are not—but rather whether there are reasons for thinking that they may
be modelled as such under a restricted set of conditions. In order to answer this question, we
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must first define what we mean by ‘input’ and ‘output’ in the context of an insect’s sensorimotor
response.

3.1 Input-output description of an insect’s sensorimotor response
We define the sensorimotor response of a flying insect as the input-output relationship LWu.t/!

y.t/ between the external stimuli to which the insect responds, and the aerodynamic forces and
moments that the insect causes to be exerted in response. In principle, the aerodynamic forces
and moments could be measured directly using a force-moment balance in tethered flight, or
indirectly using estimates of body acceleration obtained in free flight. In either case, by ‘output’,
we mean the 6 � 1 vector:

y D

�
�F

�M

�
def
D

�
F � Fr
M �Mr

�
(1)

where F and M are 3 � 1 vectors of aerodynamic force and moment components, respectively,
and where Fr and Mr represent their reference values in some specified reference condition,
which we take here to be a condition of stationary hover. For convenience, we will assume that
the aerodynamic forces and moments are resolved in a right-handed set of body axes fxb; yb; zbg

with their origin at the time-averaged position of the insect’s centre of mass, and with their yb-
axis normal to the insect’s plane of symmetry. The direction of the xb- and zb-axes may be fixed
arbitrarily in the xbzb-plane, but we will assume that the xb-axis points in an anterior direction.

By ‘input’, we mean the information needed to describe any stimulus simulating the effects
of an externally-imposed rotation and/or translation of the insect’s body with respect to some
external frame of reference. Insects respond to a combination of visual, aerodynamic, and inertial
stimuli, and we will therefore need to define a separate frame of reference for each. Thus, we
will define a visual frame of reference (Fv) that is fixed with respect to the surrounding visual
environment, an aerodynamic frame of reference (Fa) that is fixed with respect to the surrounding
mass of air, and an inertial frame of reference (Fi) that for practical purposes may be assumed
to be fixed with respect to the Earth. All of the inputs that we specify will be measured in the
insect’s body axes fxb; yb; zbg, which we will take to define a fourth frame of reference Fb. We
will use an obvious subscript notation to indicate to which frame of reference a given kinematic
variable refers, and with respect to which frame of reference it is being measured. Thus, the
notation vbjv will be used to refer to the velocity of the body frame of reference Fb with respect
to the visual frame of reference Fv.

Concerning visual stimuli, flying insects respond strongly to rotational and translational optic
flow, which they sense using their compound eyes [1]. Insects will also orientate themselves with
respect to luminance gradients in the visual environment, which they sense using their compound
eyes and ocelli [1]. We will assume that the visual environment is rigid, and will further assume
that the distance between the insect and the visual scene remains constant in all directions in the
visual frame of reference Fv. This assumption is satisfied by any visual stimulus simulating pure
rotational self-motion, and by any visual stimulus simulating translation through a visual scene
in which the normal to every visible surface is perpendicular to the direction of translational
self-motion. Abstract examples of the latter include flight at a constant altitude over an infinite
horizontal plane, and flight parallel to the long axis of an infinitely long cylinder. The significance
of this assumption is that it keeps the input vector finite-dimensional, by avoiding the need to keep
separate track of the distance to every point within the visual scene. Under these assumptions,
the external visual stimulus in a given environment is determined at every instant by the velocity
(vbjv) and angular velocity (!bjv), of the body frame of reference Fb with respect to the visual
frame of reference Fv, and by the Euler angles �bjv of the body axes fxb; yb; zbg within a set of
visual axes fxv; yv; zvg. The zv-axis will be assumed to coincide with the principal axis of any
variation in luminance, but the xv- and yv-axes may be fixed arbitrarily within the xvyv-plane.

With regard to the external aerodynamic stimuli that the insect receives, flying insects are
known to respond to both the speed and direction of the local flow, which they sense using
their flow-sensitive hairs and antennae [1]. In the interests of keeping the input vector finite
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dimensional, we will assume as a first approximation that the external aerodynamic stimulus is
determined at every instant by the velocity (vbja) and angular velocity (!bja) of the body frame
of reference Fb with respect to the aerodynamic frame of reference Fa. The reality is more com-
plicated than this, because the local flow in the vicinity of the insect is expected to be unsteady.
However, the most important source of aerodynamic unsteadiness will be the periodicity of the
flow induced by the insect’s own wingbeat, which can be handled separately if necessary within
a time-periodic modelling framework. Finally, with regard to inertial stimuli, flying insects are
known to respond to their angular velocity, and perhaps also to their angular acceleration, which
they sense using a variety of different mechanisms [1]. Including the angular acceleration as an
input causes difficulties later in the free-flight case, and although these can be handled if required,
we choose here to simplify the presentation by assuming that the inertial stimulus is determined
at every instant by the angular velocity (!bji) of the body frame of reference Fb with respect to
the inertial frame of reference Fi.

It follows that we may specify any given input as the 18 � 1 vector:

u D

26666664
vbjv
!bjv

�bjv

vbja
!bja

!bji

37777775 (2)

where each of the entries in bold represents a 3� 1 vector. We will use the freedom that we have
in fixing the xb- and zb-axes, and the xv- and yv-axes, to align the body axes fxb; yb; zbg with
the visual axes fxv; yv; zvg in the reference condition of stationary hover. With this restriction,
the input vector u is identically zero in the assumed reference condition, and it follows that the
disturbance values of all of the input variables are the same as the absolute values of those vari-
ables. For ease of explanation, we have partitioned the input vector u into four blocks defining
the optic flow stimulus, the luminance gradient stimulus, the aerodynamic stimulus, and the in-
ertial stimulus, respectively. We now consider whether it may be reasonable to treat the insect’s
response to these different kinds of stimuli as being uncoupled, which is a necessary condition
for assuming linearity.

3.2 Linearity
A system is said to be linear if all of its input-output pairs obey the superposition principle. This
means that if an input u1.t/ results in the output y1.t/, and if an input u2.t/ results in the output
y2.t/, then any linear combination of both inputs will result in the same linear combination of
both outputs. Thus, for a system described by a linear dynamic relationship L, any weighted sum
of inputs a1u1.t/C a2u2.t/, where a1 and a2 are scalar weights, will produce the output:

LŒa1u1.t/C a2u2.t/� D a1

y1.t/‚ …„ ƒ
LŒu1.t/�Ca2

y2.t/‚ …„ ƒ
LŒu2.t/� (3)

It follows that we may only model an insect’s sensorimotor response using LTI systems theory
if we can assume that the insect’s responses to optic flow stimuli, luminance intensity stimuli,
aerodynamic stimuli, and inertial stimuli are uncoupled. This can be seen, for example, by
letting:

u1 D

2666664
vbjv
!bjv

0

0
0

0

3777775 u2 D

2666664
0
0

�bjv

0
0

0

3777775 (4)
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such that LŒu1.t/� represents the so-called ‘optomotor response’ to optic flow stimuli, and LŒu2.t/�

represents the so-called ‘dorsal light response’ to the luminance gradient. Then, by Eq. 3, the
superposition principle requires that LŒu1.t/C u2.t/� D LŒu1.t/�C LŒu2.t/�, which is true in
general if and only if the optomotor response and the dorsal light response are uncoupled. The
same reasoning holds for any other combination of stimuli, including of course where u1 and u2
are taken to represent the same kind of stimulus.

In light of this, we will state as our working assumption that the insect’s responses to different
stimuli are uncoupled, so that they combine in an additive manner. This is certainly not true in
a literal sense, because some responses are known to gate others. However, the very fact that
biologists have coined different names for different components of the sensorimotor response
is itself a reflection of the fact that it has long been thought reasonable to study these responses
independently—a tradition that we continue here. More significantly, perhaps, Eq. 3 requires that
LŒa1u1.t/� D a1LŒu1�, and hence that the output of a linear system should scale in proportion
to its input. It follows that a linear model of an insect’s sensorimotor response can only possibly
be valid over a certain range—not least because motor output cannot increase indefinitely with
increases in input amplitude. Saturation nonlinearities are not peculiar to insects, of course, being
characteristic of any system with finite energy, but there are some specific nonlinearities in the
sensorimotor pathways of insects that merit further consideration here.

Motion vision in insects is founded upon the detection of moving contrast by neural circuits
known as elementary movement detectors. Flies and other insects use correlation-type motion
detectors, which detect local motion of the visual scene by comparing the luminance at one point
in the visual field to the luminance at an adjacent point a few milliseconds earlier. The out-
put of such a detector depends upon the pattern of contrast in the visual scene, but the resulting
nonlinearities will average out when analysing a natural visual scene containing many spatial fre-
quencies. More importantly, whereas the output of a correlation-type motion detector increases
monotonically with the local angular velocity of the visual scene at low speeds, it falls off at
higher speeds. This is because the output is maximal at an angular velocity equal to the angu-
lar spacing of the points at which the luminance is compared, divided by the delay between the
times at which the luminance is sampled at the two locations. It follows that a linear model of
the optomotor response can only be expected to perform well over a certain range of angular
velocity of the visual scene. With this in mind, the entries of the input vector in a linear model of
the insect’s sensorimotor response must necessarily represent not merely disturbances, but small
disturbances from the reference condition of stationary hover.

3.3 Time invariance
A linear system is said to be time-invariant if the dynamic relationship L mapping input to output
does not change with time. Thus, if it is shown that a particular input u0.t/ results in the output
y0.t/, then the same input time-shifted by �t will result in the output y0.t C�t/, such that:

LŒu0.t C�t/� D y0.t C�t/ (5)

Time invariance therefore entails strict repeatability, which is unlikely to hold for any complex
biological system: the dynamics of the sensorimotor system will vary, for example, with the
physiological state of the insect. Nevertheless, provided that the dynamics of this variation are
much slower than the dynamics of the sensorimotor response itself—which is certainly the case
for physiological variation mediated by flight hormones such as octopamine—then the time-
variance of the relationship will have an essentially static effect upon its own dynamics. This
being so, the main complication that follows is the statistical one of controlling for variation
between measured input-output pairs through some appropriate form of model averaging.

A second, quite separate, source of time-variance is the periodicity of the wingbeat itself [3].
This periodicity means that the dynamics of the sensorimotor response are fundamentally time-
periodic. On the other hand, it is an open question whether or not this periodicity is important
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and therefore needs to be captured in the model. What matters here is whether the periodicity of
the sensorimotor response has any appreciable impact upon the flight dynamics that it controls.
The answer to this question again hinges upon timescale. Specifically, if the wingbeat period is
comparable to any of the characteristic timescales of the insect’s rigid body motions, then the
insect’s flight dynamics will also be fundamentally time-periodic, and it will be necessary to
account explicitly for the periodicity of the aerodynamic forces and moments when modelling
the insect’s sensorimotor response. Methods for doing so are available within the state space
modelling framework that we now consider, and have already been applied successfully in the
context of insect flight dynamics and control [17]. However, to simplify the presentation here,
we will assume that we are dealing with an insect in which the wingbeat frequency is sufficiently
high that the periodicity of the aerodynamic forces and moments does not manifest itself in the
insect’s flight dynamics [17].

If the wingbeat period is much shorter than the shortest characteristic timescale of the in-
sect’s rigid body motions, then the insect’s flight dynamics will be essentially unaffected by the
periodicity of its sensorimotor response [2]. Then, although the flight forces themselves will be
time-periodic, their effect upon the flight dynamics will depend upon their time-average over one
or more wingbeats. This being so, it should be possible to ignore the periodic component of the
insect’s sensorimotor response without losing any important information from the perspective of
flight stabilization and control. In this case, the sensorimotor response may be treated as being
time-invariant from the perspective of the flight dynamics that it controls. An important corollary,
therefore, is that any LTI model of an insect’s sensorimotor response will be frequency-limited
of necessity, because the time-invariance of the model limits us to considering timescales that
are much longer than the wingbeat period, but much shorter than any physiological fluctuations
in the sensorimotor response. These limits upon bandwidth will have some important and useful
implications later for the modelling and identification framework that we adopt.

4 Linear time-invariant modelling framework
Using an LTI modelling framework to describe an insect’s sensorimotor response amounts to
seeking an expression for L such that for any input stimulus u.t/, the corresponding force-
moment output y.t/ is produced by y.t/ D LŒu.t/�, where L obeys Eqs. 3 and 5 above. This is
known as an external description of the system, and is attractive inasmuch as it relates sensory
input to motor output in a direct fashion. Unfortunately, the simplicity of the statement y.t/ D
LŒu.t/� belies the complexity of the underlying problem. Because the input u.t/ and output y.t/
are both functions of continuous time, they both require infinitely many numbers for their full
description—even if time t belongs to a finite interval. Hence, the LTI relationship L associates
an infinite-dimensional object y.t/, the output, with an infinite-dimensional object u.t/, the
input. Thus, the LTI relationship L is itself infinite dimensional.

4.1 External LTI description: input-output relationship
For a causal LTI system with inputs satisfying:

u.t/ D 0; t < 0 (6)

it can be shown that L is an integral infinite-dimensional operator given by:

y.t/
def
D LŒu.t/� D

Z t

0

h.t � �/u.�/d�; (7)

where h denotes the impulse response of the system, defined as the output that the system pro-
duces in response to an input comprising a unit impulse at time zero (i.e. Dirac’s delta). Unfortu-
nately, although the integral operator L mapping u.t/ to y.t/ is fully defined when the impulse
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response h is known, acquiring this knowledge is not straightforward, because the impulse re-
sponse h is an infinite-dimensional object. A theoretically insightful and practically useful way
around that difficulty is not to try to represent the LTI operator L directly with h, but to express
L indirectly with an auxiliary set of differential equations. This indirect approach leads to an
internal LTI model, or state-space model, which is the form we will adopt here.

4.2 Internal LTI description: state-space model
For p inputs collected in the input vector u, and q outputs collected in the output vector y , the
internal LTI model is assumed to have n internal states collected in the state vector x. With
these assumptions, the external LTI model expressed by Eq. 7 can be derived from the following
system of equations:

Px.t/ D Ax.t/CBu.t/; x.0/ D x0; (8)
y.t/ D Cx.t/CDu.t/: (9)

where Px stands for differentiation of x with respect to time t . The Jacobian matrices A, B, C ,
D have constant, real entries and dimensions n�n, n�p, q�n, q�p, respectively. Eqs. 8–9 are
linear, and the constancy of the matricesA,B, C , andD means that they are also time-invariant.
Eqs. 8–9 are therefore known as an internal LTI model, or state-space model, of the system.

4.3 Correspondence between the internal and external LTI descriptions
The external description of the system in Eq. 7 can be derived from the internal description of the
system in Eqs. 8–9 as follows. The solution obtained by integrating Eq. 8 for the initial condition
x0 is well known:

x.t/ D eAtx0 C

Z t

0

eA.t��/Bu.�/d� (10)

Substituting Eq. 10 into Eq. 9 yields the convolution equation:

y.t/ D C eAtx0 C

Z t

0

C eA.t��/Bu.�/d� CDu.t/ (11)

from which it is clear that the response of the system may be decomposed into two parts: the
zero-input response, obtained by setting u.t/ D 0 for t � 0 in Eq. 11; and the zero-state response,
obtained by setting x0 D 0 in Eq. 11. The total response of the system comprises the sum of
the zero-input response, corresponding to the first term on the right hand side of Eq. 11, and the
zero-state response, corresponding to the second and third terms on the right hand side of Eq. 11.

The impulse response of the system, h, is simply the zero-state response of the system when
presented with a unit impulse at time zero. Hence, using ı.t/ to denote the p � 1 vector of
Dirac’s deltas, the impulse response is obtained by setting x0 D 0 and u.t/ D ı.t/ in Eq. 11,
and integrating to yield:

h.t � �/ D

Z t

0

C eA.t��/Bı.�/d� CDı.t/ (12)

D C eA.t��/B CDı.t/ (13)

where we have made use of the fact that ı.t/ is zero for all t ¤ 0, and has the property that its
integral is identically 1. Substituting Eq. 13 back in to Eq. 11 yields:

y.t/ D C eAtx0 C

Z t

0

h.t � �/u.�/d� (14)

which differs from Eq. 7 in that Eq. 14 includes the zero-input response of the system. Hence, it
is implicit in the external description of Eq. 14 that x0 D 0 (in which case the system is said to
be relaxed at time t D 0). With this restriction, the internal LTI model in Eqs. 8–9 leads directly
to the external LTI model in Eq. 7.
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4.4 Meaning of the state-space description
The internal LTI model (Eqs. 8–9) has several advantages over the external LTI model (Eq. 7)
to which it leads: first, it is finite-dimensional; second, it is explicitly parameterised by a fixed
number of constants corresponding to the entries of matrices A, B, C , andD; third, it yields an
exact solution for the output (Eq. 11); and fourth, it represents the impulse response explicitly
(Eq. 13). These properties make the state-space description in Eqs. 8–9 a theoretically and prac-
tically attractive alternative to the abstract operator formulation in Eq. 7. In order to make use of
it, however, we must first address a fundamental and non-trivial question: What is the meaning
of the state vector x, and what is the significance of its initial condition x0?

Formally, the state vector x provides the minimal information about the system that is needed
to determine its future output, assuming that future inputs can be observed [21]. The dimension
n of the state vector x is a precise expression of this minimality, corresponding to the smallest
number of internal states needed to determine the future behaviour of the system. This intuitively
appealing requirement is made precise within the LTI framework. Eq. 8 connects the input u and
state x with the rate of change in state Px, and its solution (Eq. 10) therefore allows prediction
of the future state of the system, under input u for initial condition x0. Hence, the state vector
x must contain a set of internal states which predictably determines the transfer of input energy
to output energy through the system’s dynamics. The initial condition of the state vector x0
determines the internal energy of the system accumulated over the interval .�1; 0/, and effect-
ively summarises the system’s integrated time history before the input u.t/ is applied at t � 0.
A system for which x0 D 0 has no internal energy, and hence no tendency to change state until a
non-zero input is applied, as can be seen by inspection of Eq. 10. It follows that any non-zero ele-
ments of the state vector x can be thought of as representing disturbances from the equilibrium
point associated with the zero-input condition u.t/ D 0. Thus, if we assume for convenience that
the zero-input condition produces a steady state of hover, then the elements of the state vector x
specifically represent disturbances from the equilibrium associated with hovering flight.

5 Sensorimotor response in tethered flight
Having discussed the meaning of the state-space description in general terms, we now expand
upon this for the case of the sensorimotor response recorded in tethered flight. The importance
of expanding the model in this way is that it will allow us to explore the physical and biological
meaning of the otherwise abstract state-space representation in Eqs. 8–9. Our reason for focus-
sing upon this paradigm is that the design of a tethered flight experiment corresponds naturally
to the definition of a sensorimotor response as the relationship between the external stimuli to
which the insect responds, and the aerodynamic forces and moments that the insect causes to be
exerted in response. That is to say, the input vector u in a tethered flight experiment is defined as
the information determining the visual, aerodynamic, or inertial stimulus with which the insect
is provided. Likewise, the output vector y is known directly from the vector of forces and mo-
ments that the insect exerts upon its tether. Although input and output can be defined similarly in
a free-flight experiment, the stimuli that are provided at the input combine with the insect’s own
self-motion to determine the stimulus that the insect actually observes, whilst the forces and mo-
ments have to be inferred indirectly from measurements of the flight kinematics. It is therefore
simpler—both practically and conceptually—to consider the tethered flight case first.

5.1 Meaning of the direct transmission matrix
Having already specified the output vector y and input vector u in Eqs. 1-2 above, we begin by
considering the elements of the matrix D. This term, sometimes called the direct transmission
matrix, describes the direct transfer of energy from input to output, exclusive of the dynamics
of the sensorimotor response proper. Given that we have defined the output as the aerodynamic
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forces and moments, it is self-evident that direct transfer of energy from input to output can only
possibly be expected to occur in respect of the aerodynamic inputs. These aerodynamic inputs
are expected to affect the aerodynamic forces and moments acting upon the insect’s wings and
body—even if the insect makes no change to its motor commands. However, it will only be
reasonable to model this effect as a direct transfer of energy from input to output if the aero-
dynamic forces and moments are linearly dependent upon the aerodynamic velocity vbja and
angular velocity !bja at that instant. This linear dependence will not hold for the general case
of an unsteady flow, or in respect of large changes in airspeed or angle of attack, but it should
represent a reasonable first approximation in the case of slow or small-amplitude motions. This
being so, the only non-zero elements of the Jacobian matrix D must correspond to the partial
derivatives of the aerodynamic forces and moments with respect to vbja and !bja, at the refer-
ence condition, in the hypothetical case that the insect makes no change to its motor commands.
Although there is no reason why these aerodynamic derivatives must be known in advance of
any empirical investigation, it may be noted that they are precisely the same aerodynamic deriv-
atives as have been computed numerically in a series of recent papers on insect flight stability
[9, 10, 4, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19].

5.2 Meaning of the state vector
Whereas we were able to specify the elements of the input vector u and output vector y from first
principles, the complete set of internal states contained in the state vector x cannot be determined
in this way. This is because any set of internal states sufficient to determine the transfer of energy
from input to output through the dynamics of the insect’s sensorimotor response will include an
a priori unknown number of physiological states involved in the sensor dynamics, processing
dynamics, and actuator dynamics. Nevertheless, it is still possible to specify a subset of the
internal states from first principles, because the state vector x must necessarily contain all of
the kinematic information needed to relate the stimulus that the insect’s sensors receive to the
stimulus contained in the input vector u. The reason why these stimuli are not the same is that
most of the sensors involved in flight control are located on the head, which rotates with respect
to the body. We will therefore have cause to define a right-handed set of head axes fxh; yh; zhg

with their origin at the neck joint, their yh-axis normal to the head’s plane of symmetry, and their
xh- and zh-axes defined so as to be parallel to the xb-axis and zb-axes of the body in the reference
condition about which the model is linearized. We will take these axes to define a head-fixed
frame of reference (Fh).

The relative orientation of the head and body is of central importance in making sense of the
self-motion stimuli that the sensors on the head receive, so the information needed to specify the
orientation of the head must obviously feature somehow in the state vector x. Having resolved all
of the other kinematic variables in the body axes fxb; yb; zbg, it will prove convenient to specify
the relative orientation of head using a set of Euler angles (�bjh) giving the orientation of the
body axes fxb; yb; zbg with respect to the head axes fxh; yh; zhg. Likewise, we will specify the
relative angular velocity of the head by defining the angular velocity !bjh of the body frame of
reference Fb with respect to the head frame of reference Fh. We note that the angular velocity of
the head with respect to the body (!hjb D �!bjh) will sum with the angular velocity of the body
with respect to any of the other frames of reference that we have defined, to determine the visual,
aerodynamic, and inertial stimuli experienced by head-mounted sensors such as the compound
eyes and the antennae. Thus, we may write the n � 1 state vector as:

x D

24!bjh

�bjh

z

35 (15)

where z is an r � 1 vector of physiological states, with r D n � 6. In the event that it were
necessary to model the time-periodic component of the insect’s sensorimotor response, the state
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vector x would also include wingbeat phase as a state of the system, but we do not pursue this
complication further here.

5.3 State-space model of the sensorimotor response in tethered flight
We are now in a position to write down an expanded version of the generic state-space model
in Eqs. 8–9 corresponding to the sensorimotor response in tethered flight. Many of the elements
of the Jacobian matrices A, B, C , D will be identically zero, and our approach will therefore
be to express the state-space equations in an expanded form in which we write any non-zero
elements of the Jacobian matrices as A11 : : :A33, etc. We will explain the sparse structure of
these matrices shortly, but with this notation, the state-space model of the sensorimotor response
in tethered flight may be expanded as follows:

264 P!bjh

P�bjh

Pz

375 D
24A11 A12 A13I 0 0

A31 A32 A33

3524!bjh

�bjh

z

35C 24 0 0 0 B14 B15 0

0 0 0 0 0 0

B31 B32 B33 B34 B35 B36

35
26666664
vbjv
!bjv

�bjv

vbja
!bja

!bji

37777775 (16)

�
�F
�M

�
D

�
0 0 C13
0 0 C23

�24!bjh

�bjh

z

35C � 0 0 0 D14 D15 0
0 0 0 D24 D25 0

�
26666664
vbjv
!bjv

�bjv

vbja
!bja

!bji

37777775 (17)

where I denotes the 3�3 identity matrix. The entriesA11 : : :A13,B14,B15, andD14 : : :D25 are
3�3matrices;A31,A32, andB31 : : :B36 are r�3matrices; C13 andC23 are 3�r matrices;A33
is an r � r matrix. We now explain the structure and meaning of each of the Jacobian matrices.

Beginning with Eq. 16, theA matrix characterises how the state x evolves independent of the
input u, whilst the matrix B characterises the transfer of energy from the input u to the state x.
Hence, because almost nothing can be said from first principles about the specific meaning of
the system state x, rather little can be said about most of the entries of A and B. Nevertheless,
it is obvious from first principles that the visual inputs in the first two blocks of the input vector
u can only possibly affect the head kinematics by modifying the internal physiological state of
the system z. Consequently, the entries of B which represent the partial derivatives of P�bjh with
respect to the visual stimuli must all be zero. Likewise, the zero entries in the second row matrix
A and matrixB are easily understood by considering the kinematic relationship between the rate
of change in the Euler angles of the body with respect to the head ( P�bjh), and the angular velocity
of the body with respect to the head (!bjh). Because we have assumed that �bjh and !bjh are
identically zero in the reference condition about which the model is linearized, this kinematic
relationship has the unusually simple form:

P�bjh D !bjh (18)

which explains why the only non-zero entry in the middle row of theA andB matrices in Eq. 16
is the identity matrix I appearing in the first column of A. The remaining non-zero entries of
the matrices A and B cannot be determined from first principles, and must instead be identified
empirically from experimentally measured input-output pairs.

The matrix C describes the transfer of system energy from the state x to the output y . Eq. 17
shows C13 and C23 as the only non-zero elements of this matrix. These 3 � r matrices describe
the transfer of system energy to output energy through the internal physiological state of the
system (z), and are likely to be of rather high dimension. The remaining entries in C represent
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the partial derivatives of the aerodynamic forces and moments with respect to the orientation
(�bjh) and angular velocity (!bjh) of the body relative to the head, at the reference condition.
We have assumed that these partial derivatives are negligible, and hence zero, on the grounds
that the aerodynamic forces and moments acting upon the head will be small in comparison with
those acting upon the wings and body. Concerning the direct transmission matrix D, the non-
zero submatrices D14 : : :D25 represent the partial derivatives of the aerodynamic forces and
moments with respect to the aerodynamic velocity (vbja) and angular velocity (!bja) of the body,
at the reference condition, in the hypothetical case that the insect makes no change to its motor
commands. For reasons that we have already discussed, these are the only non-zero elements of
the direct transmission matrixD (see Section 5.1).

5.4 Summary
Although the state-space model in Eqs. 16–17 was derived for a tethered flight experiment
paradigm, it nevertheless characterises a meaningful biological system. That is to say, although
the model includes none of the flight dynamics, it does encapsulate all of the sensor dynam-
ics, processing dynamics, and actuator dynamics of a flying insect, together with the multi-body
dynamics that are involved in the insect’s head movements. In principle, a state-space model
of this sort can be identified from experimentally determined pairs of inputs u.t/ and outputs
y.t/ using the techniques of subspace system identification. In particular, the algorithms of the
Subspace Identification Methods (SIM) software package [22], [23] provide well understood,
effective, reliable and practical tools for establishing the state vector x.t/ and the undetermined
elements of the corresponding system matrices A, B, C , D empirically. Furthermore, the SIM
software produces an estimate of the minimal size n of the state to within a user-prescribed mod-
elling accuracy. Thus, having written down the model in Eqs. 16–17, it is reasonable to suppose
that it may be possible to fit a model of the insect’s sensorimotor response empirically to data
collected in a tethered flight experiment. There is no guarantee, of course, that a model of the
sensorimotor response identified under tethered flight conditions will accurately predict the sen-
sorimotor response under free-flight conditions. Nevertheless, having identified such a model, it
is always possible to synthesise a complete, testable model of the system in free flight by marry-
ing the model predicting the external forces and moments in Eqs. 16–17 with the Newton-Euler
equations of motion for a rigid body. This is done in the following section.

6 Extension to the free-flight case in closed-loop
Extending the state space model in Eqs. 16–17 to the free-flight case necessitates adding several
new states to the state vector x. These new states are needed to describe the motion of the
insect’s body, and must be sufficient to determine the free-flight motion dynamics and the visual,
aerodynamic, and inertial stimuli that the insect receives as a result of its own self-motion. We
will assume that the insect is flying through still air in a fixed visual environment, so that the
visual, aerodynamic, and inertial frames of reference can be assumed to coincide, so that we
have the kinematic identities vbjv � vbja � vbji and !bjv � !bja � !bji. We will further assume
that the principal axis of the variation in luminance is vertical at all times, which means that the
vector of Euler angles �bjv is sufficient to determine the direction of gravity in the body axes.
Thus, we may write the state vector for the sensorimotor response in free-flight hover as the
.15C r/ � 1 vector:

x0 D

26666664
!bjh

�bjh

vbjv
!bjv

�bjv

z

37777775 (19)
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in which we have taken the visual frame of reference Fv as the primary frame of reference with
respect to which the motions of the insect’s body are specified. Given the central importance of
vision in insect flight control [1], this choice is logical as well as convenient.

6.1 Linearized flight mechanics
The first step in building a state-space model of the free-flight dynamics is to establish the equa-
tions of motion expressing the linearized flight mechanics. The only external forces and moments
acting upon the system are the insect’s weight (mg), the aerodynamic force F D Fr C�F , and
the aerodynamic moment M D Mr C �M . We may similarly decompose the insect’s weight,
resolved in the body axes, as mg D m.gr C�g/, where gr denotes the gravitational accel-
eration vector in the reference condition, and m is the insect’s body mass. The gravitational
acceleration vector g is given by:

g D

24 �g sin �
g cos � sin�
g cos � cos�

35 (20)

where g D 9:81ms�2 is the gravitational acceleration, and where the Euler angles �bjv D

Œ�; �;  �T are assumed to have been defined according to a Tait-Bryan sequence. Specifically, the
orientation of the body axes fxb; yb; zbg is defined by a sequence of rotations that would bring
them to their final orientation from an initial orientation parallel to the visual axes fxv; yv; zvg.
According to this sequence, the axes are first rotated through an angle  about the zb-axis to
bring the xb-axis to its final azimuth, are next rotated through an angle � about the yb-axis to
bring the xb-axis to its final elevation, and are then rotated through an angle � about the xb-axis
to bring all of the body axes to their final orientation. Here we have assumed that the body axes
are fixed so that all of the Euler angles are zero in the reference condition about which the model
is linearized. Hence, in the small disturbance case assumed here, we may make use of the trigo-
nometric approximations cos ı � 1 and sin ı � ı, where ı is any small angle, to linearize Eq. 20
as:

g �

24 �g�g�
g

35 D 24 0

0

g

35C 24 �g 0 0

0 g 0

0 0 0

35�bjv (21)

from which it is obvious that:

�g �

24 �g 0 0

0 g 0

0 0 0

35�bjv (22)

because gr D Œ0; 0; g�T in the assumed reference condition. Furthermore, because �bjv is identic-
ally zero in the assumed reference condition, the linearized Euler angle rates P�bjv may be equated
with the angular velocity components !bjv, so that we also have the approximation:

P�bjv � !bjv (23)

Since we have assumed an equilibrium reference condition, it obviously follows thatFrCgr D 0
andMr D 0. Hence, assuming that the mass distribution properties of the insect can be treated as
constant, which is a reasonable first approximation if the mass of the wings is small with respect
to the mass of the body, then we may use the Newton-Euler equations for a rigid body to write:

�F Cm�g D m Pvbjv C!bjv �mvbjv (24)
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�M D J P!bjv C!bjv � J!bjv (25)

where J is an inertia matrix. Since we have assumed that the yb-axis is normal to the insect’s
plane of symmetry, the inertia matrix has the form:

J D

24 Ix 0 �Ixz
0 Iy 0

�Ixz 0 Iz

35 (26)

where fIx ; Iy ; Izg are the moments of inertia about the fxb; yb; zbg axes, and where Ixz is the
only non-zero cross-product of inertia. In the linearized case, where!bjv and vbjv represent small
disturbance quantities from an equilibrium reference condition, all of the cross-coupling terms
vanish from Eqs. 24–25, such that:

Pvbjv � m
�1�F C�g (27)

P!bjv � J
�1�M (28)

With Eqs. 22–23 and 27–28 in hand, we have all of the linearized flight mechanics equations
needed to write down a state-space model for the free-flight dynamics in closed loop.

6.2 State-space model of the free-flight dynamics in closed-loop
We may write down a state-space model for the predicted free-flight dynamics by combining the
state-space model of the sensorimotor response in tethered flight (Eqs. 16–17) with the linearized
Newton-Euler equations (Eqs. 27–28), the linearized equation for the gravitational acceleration
vector (Eq. 22), the linearized equation for the Euler angle rates (Eq. 23), and the identities
vbjv � vbja � vbji and !bjv � !bja � !bji given earlier. Solving for the free-flight state vector
x0 yields the following state-space model for the free-flight dynamics in closed-loop:2666666664

P!bjh

P�bjh

Pvbjv

P!bjv

P�bjv

Pz

3777777775
D

266666664

A11 A12 B14 B15 0 A13
I 0 0 0 0 0

0 0 m�1D14 m�1D15 G m�1C13

0 0 J�1D24 J�1D25 0 J�1C23

0 0 0 0 I 0

A31 A32 .B31 CB34/ .B32 CB35 CB36/ B33 A33

377777775

26666664
!bjh

�bjh

vbjv
!bjv

�bjv

z

37777775 (29)

where:

G D

24 �g 0 0

0 g 0

0 0 0

35 (30)

and where it is implicit that the insect is commanding an equilibrium reference condition, which
we have assumed here to be a state of hover. It is an open question whether the state-space model
in Eq. 29 will accurately predict the free-flight dynamics of an insect, when parameterized on
the basis of measurements made in tethered flight. The implicit or explicit assumption of most
tethered-flight studies is that this is indeed the case [2, 3], but an important benefit of writing
down Eq. 29 is to make clear exactly what is being assumed when interpreting the results of a
tethered flight experiment. That is to say, within an LTI modelling framework, the question of
whether measurements of an insect’s sensorimotor response in tethered flight can be used to infer
the insect’s sensorimotor response in free-flight hinges upon the empirical question of whether
Eq. 29 accurately predicts the insect’s free flight dynamics in closed-loop.

Eq. 29 represents the closed-loop dynamics of the sensorimotor response in free-flight, but
although it is implicit in the model that there is a commanded reference state, we have not shown
any feedforward mechanism. This is deliberate, because although it is certainly possible to make
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use of Eqs. 16–17 to postulate a feedforward control mechanism, doing so would require us to be
explicit about the units of the reference command. It would also require us to postulate a structure
for the feedforward controller, modelling the system as a two degree-of-freedom controller [24],
for example. This is beyond the scope of the present report, but will be dealt with in a later paper.
In any case, Eq. 29 already captures what we mean by the sensorimotor response in free-flight,
which relates specifically to feedback, as opposed to feedforward, control.

7 System energy distribution
As explained in Section 4.2, the state x of a system is a minimal set of internal variables which
predictably determines the transfer of input energy to output energy through the system’s dynam-
ics. The total energy transferred from input to output through the system’s dynamics is divided
by the system’s state into two parts: the control energy, arising from the input-state interaction
expressed in the state equation (8); and the observation energy, arising from the state-output
interaction expressed in the output equation (9). The system-theoretic notion of controllability
formally defines the LTI system’s capability of using the input energy to control the state while
the dual notion of observability formally defines the LTI system’s capability to observe the state
from the output energy [20]. These notions give rise to the important mathematical tools of con-
trollability and observability Gramians, which we begin by discussing in an abstract sense before
describing the formally below. The main fundamental and operational properties of the Grami-
ans are summarized in Sections 7.2 and 7.3 below, in order to give proper insights and precise
description of how the state of a system distributes energy among control and observation.

The robustly-computable Gramians, which are n � n symmetric matrices with real entries,
not only indicate whether the system is controllable and/or observable, but—crucially—give a
quantitative characterisation of how the state distributes the energy among control and observa-
tion. Specifically, the robustly-computable eigenvectors vc;1; vc;2; : : : ; vc;n of the controllability
Gramian Wc give the n orthogonal directions in the n-dimensional state space along which the
input energy has the greatest control effect on the state. These most controllable directions vc;i ,
for i D 1; 2; : : : ; n, can be automatically ordered so that the greatest amount of the control en-
ergy is carried along vc;1 and the least amount of the control energy is carried along vc;n. Dually,
the robustly-computable eigenvectors vo;1; vo;2; : : : ; vo;n of the observability Gramian Wo give
the n orthogonal directions in the n-dimensional state space along which the observation energy
allows the most effective observation of the state. These most observable directions vo;i , for
i D 1; 2; : : : ; n, can be automatically ordered so that the greatest amount of the observation
energy is carried along vo;1 and the least amount of the observation energy is carried along vo;n.

It follows that the controllability directions vc;1; vc;2; : : : ; vc;n and observability directions
vo;1; vo;2; : : : ; vo;n define dynamically meaningful directions in the n-dimensional state space.
They are therefore of particular interest in the context of formalizing the mode sensing hypo-
thesis, which we interpret here as the general proposition that the high performance observed
in insect flight can be related to the way in which the insect represents its flight dynamics in
the physiological system generating its sensorimotor response. Thus, in the specific context of
our state-space model of a tethered insect’s sensorimotor response (16)–(17), the eigenvectors
of the controllability Gramian Wc define the n orthogonal directions in the state space along
which visual, aerodynamic, and inertial stimuli corresponding to the insect’s own self motion
have the greatest control effect on the internal physiological and kinematic state of the system.
Dually, the eigenvectors of the observability Gramian Wo define the n orthogonal directions in
the n-dimensional state space along which the forces and moments that the flight apparatus pro-
duces allow the most effective observation of the internal physiological and kinematic state of
the system.
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7.1 Lyapunov functions
The sensorimotor response of a flying insect is a result of the animal’s closed-loop feedback
control, and necessarily achieves stable flight. Tethering the insect eliminates its flight dynamics,
and may change the equilibrium point of the system, but does not make output of the flight motor
unstable. Hence, the developments in the sections below are focused on systems which are
stable in the sense of Lyapunov [25]. The essence of the Lyapunov approach is to associate
with the system dynamics, or equation (8) in the LTI context, an energy-like function V and
to show that this function decreases along the trajectories of the system. More precisely, the
Lyapunov function V is a scalar function of state x.t/ that is positive definite, and whose time
derivative along all trajectories of (8) is negative. In other words, V.x.t// > 0 for all x.t/, and
PV .x.t// < 0 for all x.t/ satisfying (8) for t > 0. If a Lyapunov function V can be found, then

this means that whenever the LTI system is perturbed from its zero equilibrium, it will return to
that equilibrium asymptotically, because the energy of the perturbed system inexorably tends to
zero, limt!1 V.x.t// D 0. Such a system is said to be asymptotically stable in the sense of
Lyapunov.

In the LTI context, a standard candidate Lyapunov function is given by

V.x/ D xTPx; (31)

i.e. a quadratic form which, for a symmetric, positive-definite matrix P indeed is a positive-
definite function. The energy-like character of V in (31) is expressed by the fact that it is a sum
of squares of the state-space coordinates, which is best seen by considering P to be a diagonal
positive-definite matrix. For the candidate function (31) to be an actual Lyapunov function, it
must also decrease along the trajectories of (8). In other words, the derivative

PV .x/ D .rV.x//T Px D xT .ATP CPA/„ ƒ‚ …
�Q

x D �xTQx (32)

must be negative definite, or equivalently the matrixQmust be positive definite. In the derivation
of (32), Px D Ax was used, because LTI stability is independent of input u, and rV in (32)
stands for the gradient of V . The Lyapunov function requirements that (31) is positive definite
and, at the same time, (32) is negative definite (along the trajectories) can be summarised by the
requirement that the algebraic Lyapunov matrix equation

ATP CPA D �Q (33)

has a positive definite solution P for all positive definiteQ. Equation (33) is often rewritten as

ATP CPA CQ D 0 (34)

for convenience, where both P andQ must be positive definite, symmetric, n � n matrices with
real entries.

7.2 Controllability Gramian
Formally, an LTI system is controllable [21] if there exists a control uwhich drives the state of the
system (8) from any initial condition x0 D x.0/ at time t D 0 to any desired state x1 D x.t1/
at a finite time t1 > 0. If the system is controllable, then it is natural to ask what about the
most efficient control transferring the system from x0 to x1 over the time interval Œ0; t1�. For
Lyapunov-stable LTI systems, this optimal control problem can be simplified by asking what
minimum-energy control has brought the system to the initial condition, i.e. what would have
been the most effective history of the system which is summarised in x0. This leads to the
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optimal control problem:

min
u
J.u/

def
D

Z 0

�1

uT.t/u.t/dt; with .8/ constrainted by x.0/ D x0: (35)

The performance criterion J in (35) expresses the total control energy required to bring the
system from the distant past, t ! �1, to the beginning of the observation time, t D 0. This
energy should be minimised by choosing, from the set of admissible (piecewise continuous)
controls U, the optimal control u� which will act on the state through (8) in order to bring the
state at t D 0 to the value x0, irrespective of the value of the state in the distant past. Using (10),
the optimisation constraint is:

x0 �

Z 0

�1

e�AtBu.t/dt D 0; (36)

so that, by elementary theory of optimal control [26], the Lagrangian is obtained by adjoining
constraint (36) to the performance criterion J from (35):

L.u.t/;�/ D

Z 0

�1

uT.t/u.t/dt C �T
�
x0 �

Z 0

�1

e�AtBu.t/dt
�
; (37)

where the optimal control u� is sought as a vector function of time and the Lagrange multiplier
�� is sought as a vector of real constants. A necessary condition for optimality is that the first
variation ıL vanish for any variations ıu.t/ over .�1; 0/ and for any variations ı� over Rn,
i.e. ıL D 0 for any ıu.t/ 2 U and any ı� 2 Rn. This necessary condition yields the optimal
solution:

�� D 2W �1c x0 (38)

u�.t/ D
1

2

�
BT e�ATt

�
�� (39)

Wc D

Z 1
0

eAtBBTeATtdt (40)

J.u�.t// D xT0 W
�1
c x0; (41)

where the property Z 0

�1

e�AtBBTe�ATtdt D

Z 1
0

eAtBBTeATtdt

was used; this property holds due to the LTI character of the system.
Hence, in the deterministic setting, the LTI controllability Gramian Wc of a Lyapunov-stable

system (8) has the following key properties:

C–1 Wc is a symmetric, positive-definite matrix with real entries.

This property follows directly from (40).

C–2 Wc has real, positive eigenvalues which can be ordered:

�c;1 > �c;2 > : : : > �c;n > 0 (42)

and are not necessarily distinct.

This property follows directly from property C–1, because it is a standard property
of symmetric, positive-definite matrices.
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C–3 Wc defines an ellipsoid in the state space whose semi-axes correspond to the eigen-
vectors vc;i , i D 1; 2; : : : ; n, of Wc ; furthermore, the lengths of the semi-axes are
given by the

p
�c;i , i D 1; 2; : : : ; n, where �c;i , i D 1; 2; : : : ; n, are the correspond-

ing eigenvalues ofWc .

This property follows from properties C–1 and C–2 by considering the n-dimensional
ellipsoid as the set

Ec D fx 2 Rnj xTW �1c x 6 1g (43)

for bounded controls kuk 6 1, where W �1c also is a symmetric, positive-definite
matrix by virtue of C–1. The semi-axes of the controllability ellipsoid Ec define n
orthogonal directions in the n-dimensional state space along which the input energy
has most control effect on the state. Furthermore, the input energy effect is graded
by the ordering of the eigenvectors ofWc and is quantified by the eigenvalues ofWc .
More specifically, vc;1 is the most effective direction and the strength of controllab-
ility along vc;1 is given by

p
�c;1. At the other extreme, vc;n is the least effective

direction and the strength of controllability along vc;n is given by
p
�c;n.

C–4 Wc defines the minimum control energy xT0 W
�1
c x0 required to drive the system to

the state x0 from any other state.

This property follows directly from (41).

C–5 Wc satisfies the algebraic Lyapunov equation:

ATWc CWcA CBB
T
D 0; (44)

where A and B come from (8).

This property readily follows by substituting (40) into (44) and noting, by compar-
ing with (34), that (44) indeed is an algebraic Lyapunov equation.

C–6 Wc defines the “required supply” storage function Sreq.x0/ D x
T
0 W

�1
c x0.

This property arises from a generalised concept of the Lyapunov function [27], [28],
applicable to systems with inputs and outputs. For a dissipative system (a gener-
alisation of a Lyapunov-stable system [29]) the change in internal energy storage
can never exceed what is supplied to the system. Any internal storage function S is
bounded by the available storage and the required supply, according to the inequality

0 6 Savail.x0/ 6 S.x0/ 6 Sreq.x0/:

It follows from (41) that xT0 W
�1
c x0 is the minimum energy that needs to be supplied

to the system to drive it to x0 from any other state. Hence, this input energy is also
the required supply Sreq.x0/ D x

T
0 W

�1
c x0, see [30], [31].

Properties C–1 to C–6 of the controllability Gramian Wc were derived for a stable, determin-
istic LTI system (8). An additional, useful [32] interpretation of Wc is possible in the stochastic
set-up and this is now done for completeness. Consider the input-state equation of an LTI system
which receives no deterministic input, but—instead—is excited by a p-dimensional vector of
zero-mean, white, Gaussian noise w:

Px.t/ D Ax.t/CBw.t/; x.0/ D x0; (45)

where, as before, Px stands for differentiation of state x with respect to time t , while matrices
A and B have constant, real entries and have dimensions: n � n, n � p. It is further assumed
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that initial condition x0 is a vector of random variables and that noise w has the constant (time-
invariant) covariance matrix V D E ŒwwT �, where E Œ�� stands for the expectation operator.

Since the system (45) is excited by a stochastic input, its state x will also be a stochastic
process, so the covariance matrix of the state, R.t/ D E Œx.t/xT.t/�, is well defined. The state
covariance matrix is expressed by [33]:

R.t/ D eAtR.0/eATt„ ƒ‚ …
excitation due to x0

C

excitation due to w.t/‚ …„ ƒZ t

0

eAtBVBTeATtdt; (46)

where R.0/ D E Œx0xT0 �. For a Lyapunov-stable system, the limit limt!1R.t/ D R exists and
is given by:

R D

Z 1
0

eAtBVBTeATtdt (47)

(because the influence of the excitation due to x0 will become asymptotically negligible) and
also satisfies the algebraic matrix equation:

ATR CRA CBVBT D 0: (48)

Hence, the state covariance matrix R D limt!1R.t/ is the stochastic counterpart of the
deterministic controllability GramianWc , albeit additionally weighted by the input noise covari-
ance matrix V , as can be seen by comparing (47) with (40) and (48) with (44). The additional
presence of the noise covariance matrix V in (47) and (48) is necessary, because V expresses the
stochastic character of input w in (45) and was thus absent in (8) for deterministic input u.

7.3 Observability Gramian
Observability is the problem of determining the value of the state vector knowing only the output
over some interval of time. Formally, an LTI system is observable [21] if there exists a finite
time t1 > 0 such that, for any input u known on Œ0; t1�, it is possible to determine the initial
condition x0 D x.0/ of the system from the corresponding output y observed on Œ0; t1�. The
emphasis on the reconstruction of the initial condition is motivated by the fact [20] that, if x0
can be recovered, then the state x.t/ at any time t > 0 can be calculated by solving (8)–(9).

The output energy [34] of an LTI system is defined as:

Eo.t/ D

Z t

0

yT.t/y.t/dt (49)

and, for an observable system this output energy must be finite. In particular, it is useful to
consider the total observed energy:

Eo D lim
t!1

Eo.t/ D

Z 1
0

yT.t/y.t/dt: (50)

Since LTI observability must hold for any input u, the zero input can be assumed, u.t/ D 0 for
all t > 0, so that

y.t/ D C eAtx0 (51)

and thus any effects observed in the output must be due to the initial condition only. The total
observed energy is given by:

Eo D xT0

� Z 1
0

eATtC TC eAtdt
�
x0 (52)
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D xT0 Wox0; (53)

where

Wo D

Z 1
0

eATtC TC eAtdt (54)

is the observability Gramian for (8)–(9).
Hence, in the deterministic setting, the LTI observability Gramian Wo of a Lyapunov-stable

system (8)–(9) has the following main properties useful for modelling the optomotor response:

O–1 Wo is a symmetric, positive-definite matrix with real entries.

This property follows directly from (54).

O–2 Wo has real, positive eigenvalues whose inverses can be ordered:

��1o;1 > ��1o;2 > : : : > ��1o;n > 0 (55)

and are not necessarily distinct.

This property follows directly from property O–1, because it is a standard property
of symmetric, positive-definite matrices.

O–3 Wo defines an ellipsoid in the state space whose semi-axes correspond to the eigen-
vectors vo;i , i D 1; 2; : : : ; n, of Wo; furthermore, the lengths of the semi-axes are
given by the 1=

p
�o;i , i D 1; 2; : : : ; n, where �o;i , i D 1; 2; : : : ; n, are the corres-

ponding eigenvalues ofWo.

This property follows from properties O–1 and O–2 by considering the n-dimensional
ellipsoid as the set

Eo D fx 2 Rnj xTWox 6 1g: (56)

The semi-axes of the observability ellipsoid Eo define n orthogonal directions in
the n-dimensional state space along which the output energy allows the most ef-
fective observation of the state. Furthermore, the output energy effect is graded by
the ordering of the eigenvectors of Wo and is quantified by the eigenvalues of Wo.
More specifically, vo;1 is the most effective direction and the strength of observab-
ility along vo;1 is given by 1=

p
�o;1. At the other extreme, vo;n is the least effective

direction and the strength of observability along vo;n is given by 1=
p
�o;n.

O–4 Wo defines the output energy xT0 Wox0 generated by x0 in the absence of any input
excitation. In other words, Eo in (53) is produced solely from the energy stored by
the system, accumulated as a result of its history up to time t D 0.

This property follows directly from (50) and (51).

O–5 Wo satisfies the algebraic Lyapunov equation:

ATWo CWoA C C
TC D 0; (57)

where A and C come from (8)–(9).

This property readily follows by substituting (54) into (57) and noting, by compar-
ing with (34), that (57) indeed is an algebraic Lyapunov equation.
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O–6 Wo defines the “available storage” function Savail.x0/ D x
T
0 Wox0.

This property arises from a generalised concept of the Lyapunov function [27], [28],
applicable to systems with inputs and outputs. For a dissipative system (a gener-
alisation of a Lyapunov-stable system [29]) the change in internal energy storage,
can never exceed what is supplied to the system. Any internal storage function S is
bounded by the available storage and the required supply, according to the inequality

0 6 Savail.x0/ 6 S.x0/ 6 Sreq.x0/:

It follows from (52) that xT0 Wox0 is the total energy due to excitation by x0 which
can be observed through y . Hence, this output energy is also the available storage
Savail.x0/ D x

T
0 W0x0, see [30], [31].

Since LTI observability is independent of input, nothing new can be gained by considering
a stochastic input like w in (45). Even if the initial condition x0 is allowed to be a random
variable, then the expression for the output under zero input (51) remains unchanged and so does
the subsequent analysis of the observability Gramian.

7.4 Non uniqueness of the state-space realisation
Empirically, the sensorimotor response of an insect is defined by the experimentally available
input-output pairs which, in the context of an LTI system, corresponds directly to the external
model in (7). The external model uniquely expresses the experimentally observable input-output
behaviour of the integrated system, but its unique input-output behaviour can in turn be realised
by infinitely many internal models (8)–(9). This non-unique realisation of a unique input-output
behaviour is due to the freedom of choice of the internal state x.t/ in (8)–(9). Indeed, if x.t/
is a set of internal state variables realising the input-output behaviour defined by many input-
output pairs, then transformation of this state x into any other state Ox will result in equivalent
input-output behaviour. This can be seen by defining the state transformation:

Ox.t/ D Tx.t/; (58)

where T is any non-singular, n � n matrix with real entries. Since T is non-singular, its inverse
T �1 exists, so that (58) can be substituted into (8)–(9) to yield the transformed internal LTI
model:

POx.t/ D OA Ox.t/C OBu.t/; Ox.0/ D Ox0; (59)
y.t/ D OC Ox.t/C ODu.t/; (60)

where the transformed matrices OA, OB, OC and OD are given by:

OA D TAT �1

OB D TB
OC D CT �1

OD D D: (61)

By comparing (8)–(9) with (59)–(60), it can readily be seen that the state transformation (58)
does not alter either the input u.t/ or the output y.t/. Thus, both the state x.t/ in (8)–(9) and
the state Ox.t/ in (59)–(60) realise the same input-output behaviour. Since the choice of the
transformation matrix T in (58) is arbitrary, it follows that there are infinitely many state-space
realisations of a unique input-output behaviour.

It is worth emphasising that, for the same input-output behaviour, each distinct state-space
realisation of that behaviour has a distinct state, and distinct system matrices. In other words, if
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x.t/ and Ox.t/ are two distinct state-space realisations of the same input-output behaviour, such
that x.t/ ¤ Ox.t/, then in general the system matrices are also distinct, so that A ¤ OA, B ¤ OB,
C ¤ OC . Logically, the system matrices A, B, C must be different for different state-space
realisations, because the state x.t/ is a conduit for transferring the input energy to the output
energy through the system’s dynamics. Hence, if x.t/ is transformed into a different Ox.t/, then
A, B, C must be transformed into a correspondingly different OA, OB, OC , because the input
energy is transferred to the output energy differently by x.t/ and Ox.t/. In contrast, the direct
input-output transmission matrices are always equal, such that D D OD, because the state is not
involved in the direct transmission of input energy to output energy.

This non-uniqueness of the state-space realisation is potentially problematic if—as here—the
basis for defining the internal state of the system is not defined from first principles. Thus, al-
though the issue of selecting a particular state-space realization would not arise in first-principles
modelling, where the state of the system is expressed in terms of physically meaningful vari-
ables, this issue clearly needs to be addressed when identifying the state vector x.t/ as well as
the system matricesA,B, C from experimentally observable input-output pairs. A practical and
rational resolution to the problem is provided by selecting the particular state-space realisation
of the system that divides the its energy equally between control and observation. The unique
state-space realisation that results in equitable system energy distribution between control and
observation is known as a balanced realisation, and is of interest here for two reasons: first,
because it allows us to identify a unique but non-arbitrary realisation of the state-space model
in (8)–(9); and second, because it has a number of appealing theoretical properties which have
physical meaning when a realization is implemented in analogue circuitry.

7.5 Equitable system energy distribution
The postulate of equitable system energy distribution between control and observation allows
an essentially unique choice from infinitely many state-space realisations of the sensorimotor
response. In LTI system-theoretic terms this choice is the balanced realisation for which the
postulated equitable system energy distribution is achieved by requiring that the input and output
energy is balanced [35], [36]. More specifically, for a state-space realisation to be internally
balanced it is required that a balanced state xb is chosen such that, for this balanced state xb ,
both Gramians are equal and diagonal:

Wc D Wo D diagŒ�1; �2; : : : ; �n� D

26664
�1 0 : : : 0

0 �2 : : : 0

:::
:::
: : :

:::
0 0 : : : �n

37775 : (62)

Balanced realisation for Lyapunov-stable LTI systems has several remarkable properties, relevant
to the postulated mathematical modelling of an insect’s sensorimotor response:

B–1 Balanced realisation is unique up to multiplication by a sign matrix.

This property means that any state xb , with arbitrary Gramians, can be transformed
to a balanced state xb by a transformation Tb through xb D Tbx, see [37]. The
balancing transformation matrix Tb is unique up to multiplication by a sign matrix
S D diagŒ˙1;˙1; : : : ;˙1�, see [36]. In other words, if Tb is a balancing trans-
formation matrix, then so is STb .

B–2 The eigenvalues of balanced Gramians (62) are real, positive numbers which can be
ordered:

�1 > �2 > : : : > �n > 0 (63)
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and are not necessarily distinct.

The eigenvalues of balanced Gramians �i , i D 1; 2; : : : ; n, are the Hankel singular
values [38], [36], i.e. the square roots of the eigenvalues of the Hankel matrix H
which is the product of the Gramians Wo and Wc , given in any state-space coordin-
ates,H D WoWc . In other words, �i D

p
�i .H /, i D 1; 2; : : : ; n.

B–3 Balanced realisation maximises energy storage efficiency of the system.

It follows from C–4 and C–6 that Sreq.x0/ D x
T
0 W

�1
c x0 is the optimal input energy

while from O–4 and O–6 it follows that Savail.x0/ D x
T
0 Wox0 is the optimal output

energy. The energy storage efficiency defined as [39]

�.x0/ D
Savail.x0/

Sreq.x0/
D

xT0 Wox0

xT0 W
�1
c x0

(64)

is maximised with respect to the initial condition x0 when x0 is the eigenvector of
the Hankel matrixH D WoWc associated with the largest Hankel singular value �1,
see B–2 above.

B–4 Balanced realisation gives an equitable system energy distribution, evenly dividing
the system’s energy between control and observation.

This crucial property follows immediately by applying C–3 and O–3 to (62).

8 Mode Sensing Hypothesis
Because of the many favourable properties of a balanced realisation, we postulate that the func-
tion of the insect’s sensorimotor response is equitable system energy distribution in the integrated
system composed of the sensor dynamics, processor dynamics, actuator dynamics, and free-flight
motion dynamics. This may be treated as a system theoretic interpretation of the Mode Sensing
Hypothesis, although we note that there are other possibilities consistent with the original verbal
statement of that hypothesis. For example, in the spirit of [1], the design of the sensors might be
supposed to be matched to certain of the eigenvectors of the system matrix in the free-flight case
in closed-loop (Eq. 29). Ultimately, however, the Mode Sensing Hypothesis can be understood
as the statement that there is a common principle underlying the organization of feedback control
systems in flying insects. If such a principle exists, then it ought to be possible to express it using
the system theoretic concepts of observability and controllability that we have examined above.
The hypothesis that insects implement their sensorimotor response under a balanced realisation
is one possible expression of just such a principle. A rigorous scientific test of this hypothesis
would be to demonstrate that the internal physiological states z that are identified by assuming a
balanced realization correspond to ‘discoverable’ internal physiological states in the real insect.
That is to say, the insect itself embodies a realization of the state space model, and so if that ‘true’
realization is correctly identified then: a) the states of the identified model should be physically
meaningful; and b) the structure of the Jacobian matrices in this realization should relate directly
to the physical architecture of the insect’s control system. Thus, if there is indeed a common
principle underlying the organization of feedback control systems in flying insects then we will
know that we have identified that principle correctly when conditions (a) and (b) are satisfied
under that principle across a range of different species.
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9 Conclusions
We have laid out the necessary mathematical framework above for formulating an empirically
testable control theoretic interpretation of the Mode Sensing Hypothesis. Key novelties of the
approach include:

1. top-down application of the state-space representation to a sensorimotor response operat-
ing in closed-loop, in contrast to the bottom-up approach of starting with an open-loop
description of the insect’s flight dynamics,and postulating closure of the assumed control
loop(s) by sensory feedback;

2. complete specification of the input and output vectors associated with an insect’s sensori-
motor response, in contrast to previous work in which input and output have been defined
in an ad hoc manner;

3. a system theoretic interpretation of the Mode Sensing Hypothesis, wherein we postulate
that the function of the insect’s sensorimotor response is equitable system energy distribu-
tion in the integrated system composed of the sensory and neural processing apparatus, the
flight apparatus, and the flight motion dynamics.

The results that we have presented assume the use of a linear time-invariant (LTI) framework,
which we justified at the outset on the basis that insect sensorimotor responses may be expec-
ted to be time-invariant over an intermediate range of timescales, noting that a linearized model
is only expected to be valid for disturbances of limited angular speed and range. Although we
have not discussed any further specialisations or generalisations of the standard LTI systems the-
ory, we note in passing that the LTI theory of balanced realisations has a useful specialisation
involving frequency-weighted Gramians [40, 41, 30] which could provide a new way of interpret-
ing the bandwidth hierarchy of insect sensors. Conversely, the framework that we have outlined
above generalises in a reasonably straightforward manner to the linear time-variant (LTV) con-
text [42]. Generalisation to the nonlinear case represents a much greater challenge for at least
three reasons: (i) the nonlinear theory of balanced realisations is much less well developed than
in the LTI/LTV case; (ii) operationally effective tools (system identification) are much less well
developed; (iii) it is not immediately obvious whether nonlinear models from (i) may be expec-
ted to capture the essential nonlinearity of insect flight dynamics and control. Finally, although
we defer discussion of subspace identification methods to a later paper, the framework that we
have outlined is operationally effective for inferring the proposed models from experimental data
[22, 23, 43, 44, 45]. A short bibliography is provided overleaf as a guide to some of the wider
relevant literature.

26

Distribution A:  Approved for public release; distribution is unlimited.



10 Bibliography
Gramians: [21], [33], [34], [39], [31], [46], [47], [48], [49], [50]

Gramian assignment: [32], [51], [52], [53]

Gramian-based input-output choice: [54], [55], [56], [57]

Lyapunov equation: [58], [59], [60], [61]

Balanced realisations:
LTI: [35], [62], [63]
LTI, frequency-weighted: [40], [41], [30]
LTV: [42]
nonlinear: [64], [65]

Hankel singular values: [38], [66]

Model reduction (balanced truncation): [36], [67], [68], [69]

Model aggregation: [70]

SIM: [22], [23], [43], [44], [45]

11 Acknowledgments
We thank our sponsors for giving us the opportunity to explore this topic in depth, and thank
Ric Wehling and Gregg Abate in particular for their interest and support. Effort sponsored by
the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant
number FA8655-13-1-3077. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purpose notwithstanding any copyright notation thereon. The research
leading to these results has received funding from the European Research Council under the
European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement
no. 204513.

27

Distribution A:  Approved for public release; distribution is unlimited.



References
[1] Graham K. Taylor and Holger G. Krapp. Sensory systems and flight stability: What do

insects measure and why? In J. Casas and S.J. Simpson, editors, Advances in insect
physiology: Insect mechanics and control, volume 34 of Advances in Insect Physiology,
pages 231–316. Elsevier Academic Press, 2007.

[2] GK Taylor and ALR Thomas. Dynamic flight stability in the desert locust Schistocerca
gregaria. J. Exp. Biol., 206(16):2803–2829, AUG 2003.
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